
IF2211 Algorithm Strategy Paper, Semester II of 2023/2024 
 

Utilizing Machine Learning, Perspective Correction, 
and String Matching for Detecting QRIS 

Counterfeits 
Maulvi Ziadinda Maulana – 135221221 

Department of Informatics Engineering 
School of Electrical Engineering and Informatics 

Bandung Institute of Technology, Jl. Ganesha 10, Bandung 40132, Indonesia 
113522122@std.stei.itb.ac.id 

 
 
 

Abstract— The rapid adoption of Quick Response Code 
Indonesian Standard (QRIS) for electronic transactions in 
Indonesia has been accompanied by a rise in fraudulent activities 
involving counterfeit QRIS codes. This paper presents an 
approach to detecting counterfeit QRIS codes through the 
integration of machine learning, perspective correction, and 
string-matching algorithms. The proposed method begins with 
edge detection to isolate and normalize the QRIS image to ensure 
the image is accurate. Machine learning techniques are then use 
for text extraction. The authenticity of the QRIS is verified using 
a string-matching algorithm to compare the extracted data against 
the expected values. Testing showed that the method effectively 
corrected the perspective of QRIS images captured at various 
angles and accurately distinguished between genuine and 
counterfeit QRIS codes, though the execution time was relatively 
slow. Further optimization is needed to improve the efficiency of 
the perspective correction, text extraction, and QR decoding 
processes. 

Keywords— QRIS; Machine Learnin; Perspective Correction; 
String Matching. 

I.  INTRODUCTION  
In recent years, the use of Quick Response Code Indonesian 

Standard (QRIS) has gained significant traction in Indonesia, 
offering a very convenient and efficient method for electronic 
transactions. However, the rise in QRIS usage has also led to an 
increase in fraudulent activities, where counterfeit QRIS codes 
are used to deceive users and misappropriate funds. This paper 
aims to address this pressing issue by exploring an approach to 
detect counterfeit QRIS codes through the integration of 
machine learning, perspective correction, and string-matching 
algorithms. 

The motivation behind this research arises from several 
reported cases of QRIS counterfeiting in Indonesia, which pose 
a significant threat to both consumers and businesses. For 
instance, incidents of QRIS fraud have been reported where fake 
QR codes were used to divert payments intended for legitimate 
merchants to fraudulent accounts. Additionally, the increasing 
prevalence of such cases has prompted concerns about the 
security of QRIS transactions, highlighting the urgent need for a 

reliable detection mechanism to safeguard against fraudulent 
activities. 

This paper detection process begins with perspective 
correction to isolate and normalize the QRIS image, ensuring 
that only the relevant QR code is processed, devoid of any 
irrelevant background. This step is crucial for enhancing the 
accuracy of following analyses. Following normalization, 
machine learning techniques are used to extract text from the 
QRIS, specifically targeting the retrieval of the name and ID 
associated with the QR code.  

To verify the authenticity of the QRIS, this paper utilizes a 
string-matching algorithm to compare the reconstructed string 
against the expected name and ID from the QR code. If a match 
is found, the QRIS is considered authentic; otherwise, it is 
classified as counterfeit. This multi-step approach leverages the 
strengths of various computational techniques to provide a 
comprehensive solution for detecting counterfeit QRIS codes. 

II. FUNDAMENTAL THEORY 
By combining machine learning, perspective correction, and 

string matching, this paper aims to contribute a method for 
enhancing the security and reliability of QRIS transactions in 
Indonesia, ultimately protecting users from the disadvantageous 
effects of QRIS counterfeiting. 

A. Machine Learning and Text Detection  
Machine Learning is a subset of artificial intelligence that 

involves the development of algorithms and statistical models 
enabling computers to perform specific tasks without explicit 
instructions. Instead, the systems learn from data and improve 
their performance over time.[1] 

Machine learning's ability to learn from data and improve 
over time has made it a powerful tool in the field of computer 
vision, particularly in tasks such as text detection. By training 
machine learning models on large datasets of images with 
labeled text regions, these models can learn to identify and 
localize text within images or video frames. The detected text 
regions can then be processed further by text recognition 
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systems, creating a solution for automated text extraction from 
images. 

Text detection itself is a process in computer vision that 
involves identifying and localizing text within images or video 
frames. This task is crucial for various applications such as 
document analysis, automatic number plate recognition, and 
assisting visually impaired individuals. Text detection 
algorithms scan through images to detect regions that likely 
contain text, which can then be extracted and processed further 
by text recognition systems (often referred to as Optical 
Character Recognition, or OCR).[2] 

In this study, this paper will utilize PyTesseract for text 
detection. PyTesseract is an Optical Character Recognition 
(OCR) tool for Python that recognizes and reads the text 
embedded in images. It is a wrapper for Google's Tesseract-OCR 
Engine. By using PyTesseract, it can accelerate the research 
process as it eliminates the need to develop a new model from 
scratch. This tool has been widely used and validated in the field, 
providing reliable and efficient text detection for a variety of 
applications. Its use in this context allows to focus on the 
application and evaluation of our approach, rather than the time-
consuming task of model development. 

The text detection process in this study will specifically 
target the Quick Response Code Indonesian Standard (QRIS) 
images. The text elements of interest within these images are the 
'name' and 'id'. These pieces of information are important as they 
are unique identifiers that can be used to verify the authenticity 
of the QRIS. 

B. Perspective Correction 
Perspective correction is necessary for ensuring QRIS 

images are properly aligned and easy to read. The process begins 
with preprocessing the QRIS image by resizing it, converting it 
to grayscale, and applying transformations such as dilation, 
erosion, and Gaussian blur to enhance the edges. Grayscale 
conversion simplifies processing by removing color 
information, while dilation and erosion emphasize boundaries 
and remove noise. Gaussian blur reduces noise and detail, 
improving edge detection accuracy. 

 
Figure 1. Canny Edge Detection Illustration (Source: 

towardsdatascience.com) 

Edge detection is performed using the Canny edge detection 
algorithm, which identifies areas with rapid intensity changes. 

This algorithm uses two thresholds to detect strong and weak 
edges, ensuring that weak edges connected to strong edges are 
also considered. Then, the Hough Line Transformation is going 
to be used to detect straight lines in the edge-detected image by 
transforming points in the image space to the parameter space 
and identifying lines where many points converge.  

 
Figure 2. Line Detection Illustration (Source: towardsdatascience.com) 

Detected lines often include duplicates and irrelevant lines, 
so it needs to be filtered to retain only the most relevant ones and 
calculates their intersections. Line filtering removes duplicates 
based on predefined thresholds, and intersection points are 
calculated for lines forming angles within a specified range, 
indicating potential corners of the QRIS image. From these 
intersection points, the best quadrilateral, which forms the QRIS 
code boundary, is selected based on the maximum area of the 
convex hull. 

This process, the perspective correction, is going to be 
performed using the OpenCV library in Python, transforms the 
selected quadrilateral into a flat, rectangular image. Using the 
four corner points, a transformation matrix is computed to map 
the quadrilateral to a rectangle. This matrix is then applied to 
obtain the corrected image, ensuring a top-down, flat view of the 
QRIS code. OpenCV is chosen for this task because it contains 
all the necessary functions and algorithms for image processing, 
including edge detection, line detection, and perspective 
transformation, making it a efficient tool for such operations. 

C. QR Code Decoding 
This study utilizes ZBar, a versatile open-source library 

designed for reading barcodes from various sources including 
video streams, image files, and raw intensity sensors. ZBar's 
proficiency in decoding QR codes is largely attributed to its 
implementation of the Reed-Solomon error correction 
algorithm, which significantly enhances the quality of the 
decoding process. Reed-Solomon is a powerful error-correcting 
code capable of detecting and correcting multiple symbol errors. 
In the context of QR codes, this ensures that even if parts of the 
QR code are damaged or obscured, the embedded information 
can still be accurately decoded. This error correction capability 
is critical for maintaining the integrity of the data extracted from 
QRIS codes, as it ensures the reliability of the decoded 
information even under suboptimal conditions. 

Moreover, the ZBar library employs a unique approach akin 
to traditional "wand" and "laser" scanners used for linear (1D) 
bar codes. These traditional scanners decode bar codes by 
passing a light sensor over the light and dark areas of a symbol, 
interpreting the reflected light to decode the data. Similarly, 
ZBar performs linear scan passes over an image, treating each 
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pixel as a sample from a single light sensor. This method allows 
the data to be scanned, decoded, and assembled on the fly, 
bypassing the need for complex image processing techniques 
that require significant CPU and memory resources. By adopting 
this approach, ZBar simplifies the decoding process and reduces 
sensitivity to various filter parameter configurations, which can 
often be difficult for end-users to understand and set up 
correctly. 

Furthermore, ZBar abstracts this linear scanning approach 
into a layered streaming mode, allowing for efficient real-time 
processing of barcode data. This approach not only enhances the 
decoding speed but also maintains high accuracy, making it 
particularly effective for applications where rapid and reliable 
barcode reading is needed. The combination of Reed-Solomon 
error correction and ZBar's linear scanning method ensures that 
QR codes, including QRIS codes, are decoded accurately and 
efficiently, providing a great solution for detecting counterfeit 
QRIS codes. By using ZBar's efficient decoding capabilities and 
the robust error correction provided by Reed-Solomon, this 
system can reliably extract and verify the embedded information 
in QRIS codes. 

D. String Matching Algorithm  
The fundamental theory behind string matching algorithms 

revolves around efficiently finding a pattern within a larger text. 
The two primary approaches discussed are the Knuth-Morris-
Pratt (KMP) algorithm and the Boyer-Moore Algorithm. 

1. Knuth-Morris-Pratt (KMP) Algorithm  

The Knuth-Morris-Pratt (KMP) algorithm is another highly 
efficient string matching algorithm. It avoids redundant 
comparisons by preprocessing the pattern to determine the 
longest prefix which is also a suffix (LPS array). This 
preprocessing allows the algorithm to skip sections of the text 
that have already been matched. 

The algorithm preprocesses the pattern to create the LPS 
array, which stores the length of the longest prefix that is also a 
suffix for each sub-pattern of the pattern. This step ensures that 
the algorithm does not re-examine characters that have already 
been matched. 

 
Figure 3. LPS in KMP Algorithm (Source: medium.com) 

After doing the preprocessing, the algorithm then switch to 
matching phase. During the matching phase, the algorithm 
compares characters of the pattern with characters of the text. If 
a mismatch occurs, it uses the LPS array to shift the pattern 
efficiently without re-examining previously matched characters. 

 The KMP algorithm is particularly effective for patterns with 
repetitive sub-patterns and performs well even with small 

alphabets. Its time complexity is O(m + n), where m is the length 
of the pattern and n is the length of the text, making it faster than 
brute force methods . 

2. Boyer-Moore Algorithm  

 The Boyer-Moore string matching algorithm is known for its 
efficiency and is widely used in various applications. This 
algorithm utilizes two primary techniques: the looking-glass 
heuristic and the character-jump heuristic. These heuristics 
allow the algorithm to skip sections of the text, thereby reducing 
the number of comparisons and enhancing its performance. 

 When a mismatch occurs, the algorithm uses a precomputed 
table to determine how far the pattern can be shifted. This table, 
called the last occurrence function, maps each character in the 
pattern to its last occurrence in the pattern. If the mismatched 
character in the text does not exist in the pattern, the pattern is 
shifted completely past the mismatched character. 

 
Figure 4. Example of Last Occurrence Table (Source: 

www.semanticscholar.org) 

 The Boyer-Moore algorithm’s efficiency comes from its 
ability to skip large sections of the text, especially when dealing 
with large alphabets. However, it performs poorly with small 
alphabets and in the worst-case scenario, where the pattern and 
text are composed of repetitive characters. 

3. Algorithm Choice for QRIS Counterfeit Detection 

 For detecting QRIS counterfeits, where the QR codes 
contain a significant amount of data, the Boyer-Moore algorithm 
is better. QR codes encode large strings of characters, and the 
Boyer-Moore algorithm’s ability to skip large sections of the text 
using the last occurrence array makes it well-suited for this task. 
Given the need for efficient and reliable detection, the Boyer-
Moore algorithm’s heuristics ensure that even large QR codes 
can be processed quickly and accurately by minimizing 
unnecessary comparisons and having more efficient pattern 
shifts. 

III. METHODOLOGY 
Based on the explanations in the fundamental theory, the 

research process will be divided into several parts. The first part 
involves perspective correction of the image to ensure that the 
QR code is properly aligned and isolated from its background. 
The second part focuses on text extraction from both the image 
and the QR code by using the machine learning text detection. 
Finally, the third part is the text matching stage, where the 
extracted text from the image is compared with the text from the 
QR code to verify authenticity and detect any potential 
counterfeit QRIS codes.  
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A. Perspecive Correction 

         
 

          (a)                 (b) 
 

Figure 5. (a) Test Image for Perspective Correction and (b) Image after some 
filtering (Source: Author’s Documentation)  

 
The first step of this process is converting the image to 

grayscale and applying dilation, blurring, and erosion. These are 
important preprocessing steps for edge detection and line 
detection. Converting to grayscale simplifies the image by 
reducing the color channels to one, making it easier to process 
and analyze. Dilation is applied to enhance and connect edges, 
making noticeable features more visible. Blurring, that is done 
using a Gaussian blur, helps reduce noise and detail. Erosion 
then refines the edges by removing small, irrelevant details and 
noise, improving the accuracy of following edge detection steps. 
These preprocessing steps collectively prepare the image, 
enhancing the important features while minimizing noise, to 
facilitate more accurate detection of lines and intersections in the 
following processing stages. 

           
 

          (a)                 (b) 
 

Figure 6. (a) Result of Canny Edge Detection and (b) The Result of Hough 
Line Transformation (Source: Author’s Documentation) 

 
The next step is performing edge detection using the Canny 

Edge Detection Algorithm and then applying the Hough 
Transform to detect line. The Canny algorithm detects edges by 
identifying areas of rapid intensity change, creating a binary 
image where edges are highlighted. This edge map is then 
processed using the Hough Transform, which detects straight 

lines by transforming edge points into a parameter space (rho 
and theta) and identifying lines that accumulate sufficient sizes. 
These detected lines represent the structural boundaries of the 
document or object in the image. The next step is to identify the 
intersection points of these lines and correct the perspective of 
the image based on these points. 

          
 

          (a)                 (b) 
 

Figure 7.  (a) Intersection Points of the lines and (b) The Best 4 Point that 
created the biggest quadrilateral (Source: Author’s Documentation) 

 
The next step if finding the intersection points of the detected 

lines and identifying the four best points that form the largest 
quadrilateral. After detecting lines using the Hough Transform, 
the next step is to calculate the intersection points of these lines. 
These points represent where two different lines intersect, likely 
indicating the corners of the document or object of interest. From 
all the intersection points found, an algorithm then searches for 
the four points that form the largest quadrilateral. This is done 
by examining combinations of intersection points and 
calculating the area of the quadrilateral they form. The four 
points that form the largest area are most likely the corners of 
the document or object, which are then used for perspective 
correction to make the image appear straight and properly 
aligned. 

 

 
 

Figure 8. Result Image after Perspective Correction 
 

Finally, after identifying the four best points that form the 
largest quadrilateral, the perspective correction is applied. Using 
these points, a perspective transformation is performed to map 
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the identified quadrilateral to a rectangular shape, effectively 
"straightening" the QRIS image. This corrected image appears 
as if it was taken from a direct overhead view, making it properly 
aligned and easier to read or analyze further. The result of this 
perspective correction process is a clear, properly oriented image 
that accurately represents the QRIS in its corrected form. 

B. Image and QR Code Text Extraction  
The process involves two main tasks: QR code detection and 

decoding and text extraction from the image. This process 
utilizes several libraries. OpenCV (cv2) is used for most image 
processing tasks, including loading images, converting them to 
grayscale, applying Gaussian blur to reduce noise, and using 
Otsu's thresholding to create a binary image that highlights 
significant contrast areas. OpenCV also detects and filters 
contours based on their area, aspect ratio, and shape to identify 
and extract the QR code region for decoding. 

For QR code decoding, the pyzbar library is used. This 
library is specifically designed to decode barcodes and QR codes 
from images, providing the functionality to read and interpret the 
encoded data within the QR code. 

For text extraction, the Pillow (PIL) library and pytesseract 
are used. Pillow is a powerful imaging library that allows to open 
and manipulating image files. Tesseract OCR, accessed through 
the pytesseract wrapper, processes the image to detect and 
extract textual content, converting it into a readable string 
format. Pytesseract is a machine learning-based OCR tool, 
having a trained models to recognize and decode text from 
images accurately. This combination of libraries enables 
complete image processing, QR code decoding, and text 
extraction capabilities within the code. 

Below is the result of the text extraction from the image in 
figure 8 using these libraries:  
QR Code Standar 

Ein [ = )/Pembayaran Nasional N 

BAZNAS INDONESIA 

NMID : ID2020034177440 

Dicetak Oleh: Sh 

Versi Cetak : 1.0-2020.04,23 

Given that the extracted text may contain some unnecessary 
information, a filtering process is required to remove the 
unwanted text, leaving only the name and ID from the given 
QRIS. Below is the final result of the text extraction.  
BAZNAS INDONESIA 

ID2020034177440  

Below is the result of the QR decoding:  
00020101021126590016ID.CO.SHOPEE.WWW01189360091800
0016725302061672530303UBE51440014ID.CO.QRIS. 
WWW0215ID20200341774400303UBE5204839853033605802ID
5916BAZNAS Indonesia6013JAKARTA 
TIMUR61051315062070703A0163041C0Cbbb 

C. String Matching Phase 
Once the name and ID from the QRIS have been obtained, 

a string-matching process will be done using these as patterns, 
with the text being the decoded result from the QR. If both the 
name and ID are found within the text, it can be concluded that 
the QRIS is authentic. However, if either or both are not found 
in the QRIS, it can be concluded that the QRIS is fake. 

According to fundamental theory, the Boyer-Moore 
algorithm will be used for this task. The algorithm will be 
executed twice: once to search for the name and once to search 
for the ID. 

D. Program Testing  
The testing process will be conducted in two parts. The first 

part will be carried out on the perspective correction program. 
The second part will involve testing the string-matching process 
to determine the authenticity of QRIS. 

1. Perspective Correction Testing 

To test the perspective correction, images will be captured 
at various angles. The following illustration shows the angles at 
which the images will be taken. The angle value q will change 
from 0, 30, and 60 degrees. At 0 degrees, the image is captured 
directly from the front, resulting in a straight and flat view of 
the QRIS code. At 30 degrees, the image is taken with a slight 
tilt, which may introduce some perspective distortion but 
remains relatively clear for recognition. At 60 degrees, the 
image is captured with a greater tilt, introducing more 
significant perspective distortion and making it harder to 
recognize directly without perspective correction. These angle 
variations are crucial for testing the ability of the perspective 
correction algorithm to handle different levels of distortion that 
might occur under various image capture conditions.   

 
 

 
Figure 9. Test Image for Perspective Correction 

 
 

And below is the result test for each angle. 
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                (a)                    (b) 
 

Figure 10. (a) Image with 0 degree tilt and (b) The corrected image result 
(Source: Author’s Documentation) 

 

      
 

(a)                    (b) 
 

Figure 11. (a) Image with 30 degree tilt and (b) The corrected image result 
(Source: Author’s Documentation) 

 

      
 

(a)                    (b) 
 

Figure 12. (a) Image with 30 degree tilt and (b) The corrected image result 
(Source: Author’s Documentation) 

 
 
 
 

2. String Matching testing 

      
(a)                    (b) 

 
Figure 13. (a) Genuine QRIS Image and (b) Counterfeit QRIS Image (Source: 

Author’s Documentation) 
 

For testing purposes, two QRIS codes will be used: one 
genuine (QRIS (a)) and one fake (QRIS (b)). The testing will 
be conducted for each type, where the program will be used to 
verify the authenticity of the QRIS. Each type of QRIS will be 
captured in images three times with different angles (θ) of 0, 30, 
and 60 degrees, like the previous tests. The results of the text 
extraction and the time used will be displayed in the following 
table. 

Table 1. QRIS Authenticity Test Results 
 

       Type 
 
	  q 

Real Fake 

Result Time 
Used 

Result Time 
Used 

0° Real 4,60 s Fake 3,96 s 
30° Real 6,00 s Fake 4,81 s 
60° Real  5,72 s Fake 4,77 s 

 

IV. RESULT & ANALYSIS 
The testing process was divided into two parts: perspective 

correction testing and string-matching testing. In the 
perspective correction testing phase, images of QRIS codes 
were captured at various angles (0°, 30°, and 60°) to evaluate 
the accuracy of the perspective correction algorithm. The 
results showed that at 0° and 30°, the perspective correction was 
great, with the QRIS images being accurately corrected and 
fully captured. However, at a 60° angle, while the algorithm 
managed to include the entire QRIS image, some background 
elements were also included, indicating a decrease in accuracy.  

In the string-matching testing phase, the process was tested 
to verify the authenticity of the QRIS codes using one genuine 
QRIS (a) and one fake QRIS (b). Images were captured at 
angles of 0°, 30°, and 60°, and the results of text extraction and 
QR decoding were analyzed. The program successfully 
distinguished between genuine and fake QRIS codes in all test 
cases. The performance of text extraction and QR decoding was 
consistent and accurately identified the authenticity of the QRIS 
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codes. However, the execution time was relatively slow, with 
most tests taking over 4 seconds, suggesting possible 
inefficiencies in the process. This indicates that despite using 
the Boyer-Moore string matching algorithm, which is known 
for its efficiency, the time-consuming steps might be in 
perspective correction, text extraction, or QR decoding. 

V. CONCLUSION 
In conclusion, the testing demonstrated that the perspective 

correction and text extraction processes are effective in 
handling QRIS images captured at various angles. Although the 
perspective correction at a 60° angle showed reduced accuracy 
by including some background elements, it did not affect the 
subsequent processes, and the QRIS codes were correctly 
identified. The string-matching tests confirmed the program's 
ability to differentiate between genuine and fake QRIS codes. 
However, the overall performance could be improved as the 
execution time for these processes was notably slow. Further 
research is needed to pinpoint whether the time-consuming 
steps are in perspective correction, text extraction, or QR 
decoding, and to optimize these processes accordingly. 
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